
THIRD EDITION

P R 0 G RAM M I N G:
AN INTRODUCTION TO COMPUTER SCIENCE

OHN ZELLE

FRANKLIN, BEEDLE
[INDEPENDENT PUBLISHERS SINCE 1985]

PYTHON PROGRAMMING
AN INTRODUCTION TO COMPUTER SCIENCE

THIRD EDITION

John M. Zelle
Wartburg College

Franklin, Beedle & Associates Inc.+ 2154 NE Broadway, Suite 100 +Portland, Oregon 97232 + 503/284-6348 + www.fbeedle.com

Publisher

Editor

Production Associate

Cover Photography

Printed in the U. S. A.

Tom Sumner (tsumner@fbeedle.com)

Brenda Jones

Jaron Ayres

Jim Leisy ©2012

Names of all products herein are used for identification purposes only and are trademarks

and/or registered trademarks of their respective owners. Franklin, Beedle & Associates

Inc. makes no claim of ownership or corporate association with the products or compa

nies that own them.

©2017 Franklin, Beedle & Associates Incorporated. No part of this book may be repro

duced, stored in a retrieval system, transmitted, or transcribed, in any form or by any

means-electronic, mechanical, telepathic, photocopying, recording, or otherwise

without prior written permission of the publisher. Requests for permission should be

addressed as follows:

Rights and Permissions

Franklin, Beedle & Associates Incorporated

2154 NE Broadway, Suite 100

Portland, Oregon 97232

Library of Congress Cataloging-in-Publication data

Names: Zelle, John M., author.
Title: Python programming : an introduction to computer science I John M.

Zelle, Wartburg College.
Description: Third edition. I Portland, Oregon : Franklin, Beedle &

Associates Inc., [2016] I Includes bibliographical references and index.
Identifiers: LCCN 2016024338 I ISBN 9781590282755
Subjects: LCSH: Python (Computer program language)
Classification: LCC QA76.73.P98 Z98 2016 I DDC 005.13/3--dc23
LC record available at https:/ /lccn.loc.gov/2016024338

Contents

Foreword, by Guido van Rossum .. ix
Preface . x

Chapter 1 Computers and Programs

1.1 The Universal Machine . 1

1.2 Program Power . 3

1. 3 What Is Computer Science? 3

1.4 Hardware Basics 5

1.5 Programming Languages 6

1.6 The Magic of Python 9

1. 7 Inside a Python Program 15

1.8 Chaos and Computers 18

1. 9 Chapter S u m mary 20

1.10 Exercises .. 21

1

Chapter 2 Writing Simple Programs 27
2.1 The Software Development Process 27

2. 2 Exam pie Program: T em perature Converter ... 28

2.3 Elements of Programs ... 31

2.3.1 Names ... 31

2.3.2 Expressions 32

2.4 0 utput Statements 34

2. 5 Assignment Statements 36

2. 5 .1 S i m pIe Assign men t 3 7

2.5.2 Assigning Input 39

2.5.3 Simultaneous Assignment 41

2. 6 Definite Loops 43

.
IV

2.7

2.8

2.9

Contents

Example Program: Future Value ... 47

Chapter Summary .. 50

Exercises . 51

Chapter 3 Computing with Numbers 57
3.1 Numeric Data Types .. 57

3. 2 Type Conversions and Rounding ... 62

3.3 Using the Math Library . 65

3.4 Accumulating Results: Factorials .. 68

3.5 Limitations of Computer Arithmetic ... 71

3.6 Chapter Summary .. 75

3. 7 Exercises .. 76

Chapter 4 Objects and Graphics 83
4.1 Overview .. 83

4. 2 T h e 0 b j ect of 0 b j ects. 84

4.3 Simple Graphics Programming .. 85

4.4 Using Graphical Objects ... 91

4.5 Graphing Future Value ... 96

4.6 Choosing Coordinates ... 103

4. 7 Interactive Graphics ... 107

4.7.1 Getting Mouse Clicks ... 107

4. 7.2 Handling Textual Input .. 109

4.8 Graphics Module Reference .. 112

4.8.1 Graph Win Objects ... 113

4. 8. 2 G ra ph i cs 0 b j ects. 115

4.8.3 Entry Objects .. 119

4.8.4 Displaying I mages .. 120

4.8.5 Generating Colors .. 121

4.8.6 Controlling Display Updates (Advanced) .. 121

4. 9 Chapter Sum mary . 122

4.10 Exercises .. 123

Chapter 5 Sequences: Strings, Lists, and Files 129
5.1

5.2

5.3

5.4

The String Data Type .. 129

Si m pie String Processing .. 133

Lists as Sequences .. 136

String Representation and Message Encoding ... 139

5.4.1 String Representation ... 139

5.4.2 Programming an Encoder .. 141

5.5 String Methods .. 142

5.5.1 Programming a Decoder .. 142

5.5.2 More String Methods ... 146

5.6 Lists Have Methods. Too ... 147

5. 7 From Encoding to Encryption ... 150

Contents

5.8 Input/Output as String Manipulation . 151

5. 8.1 Exam pie Application: Date Conversion . 151

5. 8. 2 String Formatting 154

5.8.3 Better Change Counter 157

5. 9 File Processing 158

5.9.1 Multi-line Strings ... 158

5.9.2 File Processing ... 159

5.9.3 Example Program: Batch Usernames .. 163

5.9.4 File Dialogs (Optional) .. 164

5.10 Chapter Summary .. 167

5.11 Exercises . 168

Chapter 6 Defining Functions 175
6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

The Function of Functions ... 175

Functions, Informally .. 177

Future Value with a Function ... 181

Functions and Para meters: The Exciting Deta i Is 183

Functions That Return Values 187

Functions that Modify Para meters 193

Functions and Program Structure 199

Chapter Summary .. 202

Exercises .. 203

Chapter 7 Decision Structures 209
7.1 Sim pie Decisions .. 209

7.1.1 Example: Temperature Warnings .. 210

7.1.2 Forming Simple Conditions .. 212

7 .1.3 Example: Condition a I Program Execution ... 214

7. 2 Two-Way Decisions .. 216

7.3 Multi-Way Decisions .. 220

7.4 Exception Handling .. 223

7. 5 Study in Design: Max of Three 227

7.5.1 Strategy 1: Compare Each to All. 228

7.5. 2 Strategy 2: Decision Tree 230

7 .5.3 Strategy 3: Sequential Processing ... 231

7 .5.4 Strategy 4: Use Python .. 234

7 .5.5 Some Lessons .. 234

7.6 Chapter Summary .. 235

7. 7 Exercises .. 236

Chapter 8 Loop Structures and Booleans 243
8.1 For Loops: A Quick Review .. 243

8.2 Indefinite Loops ... 245

8. 3 Common Loop Patterns ... 24 7

8. 3.1 Interactive Loops 24 7

8.3.2 Sentinel Loops 249

v

vi Contents

8.3.3 File Loops . 252

8.3.4 Nested Loops . 254

8.4 Computing with Boo leans .. 256

8.4.1 Boolean Operators ... 256

8.4.2 Boolean Algebra .. 260

8. 5 Other Common Structures . 262

8.5.1 Post-test Loop ... 262

8.5.2 Loop and a Half .. 264

8.5.3 Boolean Expressions as Decisions ... 266

8.6 Example: A Simple Event Loop .. 269

8. 7 Chapter Summary .. 275

8. 8 Exercises . 277

Chapter 9 Simulation and Design 283
9 .1 S i m u I at i n g Ra cq u et ba II. 2 83

9.1.1 A Simulation Problem . 284

9 .1. 2 Ana lysis and Specification .. 284

9. 2 Pseudo-random Numbers ... 286

9.3 Top-Down Design .. 288

9. 3.1 Top-Level Design . 289

9. 3. 2 Separation of Concerns . 291

9.3.3 Second-Level Design . 291

9.3.4 Designing simNGames . 293

9.3.5 Third-Level Design . 295

9.3.6 Finishing Up . 298

9.3. 7 Summary of the Design Process . 300

9.4 Bottom-Up Implementation .. 301

9.4.1 Unit Testing .. 301

9.4.2 Simulation Results ... 303

9. 5 Other Design Techniques . 304

9.5.1 Prototyping and Spiral Development . 304

9.5.2 The Art of Design . 306

9.6 Chapter Summary . 306

9. 7 Exercises . 307

Chapter 10 Defining Classes 313
10.1 Quick Review of Objects . 313

10.2 Example Program: Cannonball . 314

10.2.1 Program Specification . 314

10.2.2 Designing the Program .. 315

10.2.3 Mod ularizing the Program ... 319

10.3 Defining New Classes ... 321

10.3.1 Example: Multi-sided Dice ... 321

10.3.2 Example: The Projectile Class . 325

10.4 Data Processing with Class . 327

10.5 0 bjects and Encapsulation . 331

Contents

10.5.1 Encapsulating Useful Abstractions .. 331

10.5.2 Putting Classes in Modules .. 333

10.5.3 Module Documentation . 333

10.5.4 Working with Multiple Modules . 335

10.6 Widgets . 337

10.6.1 Example Program: Dice Roller ... 337

10.6.2 Building Buttons .. 338

10.6.3 Building Dice ... 342

10.6.4 The Main Program .. 345

10. 7 Anima ted Can non ba II . 346

10.7.1 Drawing the Animation Window ... 347

10.7 .2 Creating a Shot Tracker .. 348

10.7.3 Creating an Input Dialog .. 350

10.7.4 The Main Event Loop .. 353

10. 8 Chapter S u m mary . 355

10.9 Exercises .. 356

Chapter 11 Data Collections 363
11.1 Exam pie Problem: S i m pie Statistics .. 363

11.2 Applying Lists .. 365

11.2.1 Lists and Arrays ... 366

11.2. 2 List 0 perations .. 367

11.2.3 Statistics with Lists .. 370

11.3 Lists of Records ... 375

11.4 Designing with Lists and Classes .. 379

11.5 Case Study: Python Ca leu Ia tor ... 385

11.5.1 A Calculator as an Object .. 385

11.5. 2 Constructing the Interface .. 385

11.5.3 Processing Buttons .. 388

11.6 Case Study: Better Can non ba II Animation .. 392

11.6 .1 Creating a Launcher ... 393

11.6.2 Tracking Multiple Shots ... 396

11.7 Non-seq uenti a I Collections .. 401

11.7 .1 Dictionary Basics ... 401

11.7. 2 Dictionary 0 perations .. 402

11.7.3 Example Program: Word Frequency ... 404

11. 8 Chapter S u m mary . 409

11.9 Exercises .. 410

Chapter 12 Object-Oriented Design 419
12.1 The Process of OOD .. 419

12.2 Case Study: Racq uetba II Simulation ... 422

12.2.1 Candidate Objects and Methods .. 422

12.2.2 Implementing SimStats .. 424

12.2.3 Implementing RBaiiGame ... 426

12.2.4 Implementing Player .. 429

..
VI I

v111 Contents

12.2.5 The Complete Program .. 430

12.3 Case Study: Dice Poker .. 433

12.3.1

12.3.2

12.3.3

12.3.4

12.3.5

Program Specification . 433

Identifying Candidate Objects . 434

Implementing the Model . 436

A Text-Based U I .. 440

Developing a G U I ... 443

12.4 00 Concepts ... 451

12.4.1 Encapsulation .. 452

12.4.2 Polymorph ism .. 453

12.4.3 Inheritance ... 453

12. 5 Chapter S u m mary . 455

12.6 Exercises . 456

Chapter 13 Algorithm Design and Recursion 459
13.1 Searching ... 460

13.1.1

13.1.2

13.1.3

13.1.4

A Si m pie Searching Problem .. 460

Strategy 1: Linear Search ... 461

Strategy 2: Binary Search .. 462

Com paring Algorithms ... 463

13.2 Recursive Problem Solving ... 465

13.2.1 Recursive Definitions .. 466

13.2.2 Recursive Functions ... 468

13.2.3 Example: String Reversal ... 469

13.2.4 Example: Anagrams ... 471

13.2.5 Example: Fast Exponentiation .. 472

13.2.6 Example: Binary Search ... 473

13.2. 7 Recursion vs. Iteration ... 4 7 4

13.3 Sorting Algorithms ... 4 77

13.3.1 Naive Sorting: Selection Sort .. 477

13.3.2 Divide and Conquer: Merge Sort .. 479

13 . 3 . 3 Com pa r i n g Sorts . 481

13.4 Hard Problems ... 484

13.4.1 Tower of Hanoi .. 484

13.4.2 The Halting Problem ... 489

13.4.3 Conclusion ... 492

13.5 Chapter Summary .. 493

13.6 Exercises .. 494

Appendix A Python Quick Reference
Appendix C Glossary
Index

503
513
525

Foreword

When the publisher first sent me a draft of this book, I was immediately excited.

Disguised as a Python textbook, it is really an introduction to the fine art of pro

gramming, using Python merely as the preferred medium for beginners. This is

how I have always imagined Python would be most useful in education: not as

the only language, but as a first language, just as in art one might start learning

to draw using a pencil rather than trying to paint in oil right away.

The author mentions in his preface that Python is near-ideal as a first pro

gramming language, without being a "toy language. " As the creator of Python I

don't want to take full credit for this: Python was derived from ABC, a language

designed to teach programming in the early 1980s by Lambert Meertens, Leo

Geurts, and others at CWI (National Research Institute for Mathematics and

Computer Science) in Amsterdam. If I added anything to their work, it was mak

ing Python into a non-toy language, with a broad user base and an extensive

collection of standard and third-party application modules.

I have no formal teaching experience, so I may not be qualified to judge its

educational effectiveness. Still, as a programmer with nearly 30 years experi

ence, reading through the chapters I am continuously delighted by the book's

clear explanations of difficult concepts. I also like the many good excercises and

questions which both test understanding and encourage thinking about deeper
•

ISSUeS.

Reader of this book, congratulations! You will be well rewarded for studying

Python. I promise you'll have fun along the way, and I hope you won't forget

your first language once you have become a proficient software developer.

-Guido van Rossum
.

IX

Preface

This book is designed to be used as a primary textbook in a college-level first

course in computing. It takes a fairly traditional approach, emphasizing problem

solving, design, and programming as the core skills of computer science. However,

these ideas are illustrated using a non-traditional language, namely Python. In my

teaching experience, I have found that many students have difficulty mastering

the basic concepts of computer science and programming. Part of this difficulty

can be blamed on the complexity of the languages and tools that are most often

used in introductory courses. Consequently, this textbook was written with a

single overarching goal: to introduce fundamental computer science concepts as

simply as possible without being simplistic. Using Python is central to this goal.

Traditional systems languages such as C++, Ada, and Java evolved to solve

problems in large-scale programming, where the primary emphasis is on struc

ture and discipline. They were not designed to make writing small- or medium

scale programs easy. The recent rise in popularity of scripting (sometimes called

"agile") languages, such as Python, suggests an alternative approach. Python

is very flexible and makes experimentation easy. Solutions to simple problems

are simply and elegantly expressed. Python provides a great laboratory for the

neophyte programmer.

Python has a number of features that make it a near-perfect choice as a

first programming language. The basic structures are simple, clean, and well

designed, which allows students to focus on the primary skills of algorithmic

thinking and program design without getting bogged down in arcane language

details. Concepts learned in Python carry over directly to subsequent study of

X

Preface

systems languages such as C++ and Java. But Python is not a "toy language."

It is a real-world production language that is freely available for virtually every

programming platform and comes standard with its own easy-to-use integrated

programming environment. The best part is that Python makes learning to pro

gram fun again.

Although I use Python as the language, teaching Python is not the main

point of this book. Rather, Python is used to illustrate fundamental principles of

design and programming that apply in any language or computing environment.

In some places I have purposely avoided certain Python features and idioms that

are not generally found in other languages. There are many good books about

Python on the market; this book is intended as an introduction to computing.

Besides using Python, there are other features of this book designed to make it

a gentler introduction to computer science. Some of these features include:

• Extensive use of computer graphics. Students love working on

programs that include graphics. This book presents a simple-to-use graph

ics package (provided as a Python module) that allows students both to

learn the principles of computer graphics and to practice object-oriented

concepts without the complexity inherent in a full-blown graphics library

and event-driven programming.

• Interesting examples. The book is packed with complete programming

examples to solve real problems.

• Readable prose. The narrative style of the book introduces key computer

science concepts in a natural way as an outgrowth of a developing discus

sion. I have tried to avoid random facts or tangentially related sidebars.

• Flexible spiral coverage. Since the goal of the book is to present con

cepts simply, each chapter is organized so that students are introduced to

new ideas in a gradual way, giving them time to assimilate an increasing

level of detail as they progress. Ideas that take more time to master are

introduced in early chapters and reinforced in later chapters.

• Just-in-time object coverage. The proper place for the introduction of

object-oriented techniques is an ongoing controversy in computer science

education. This book is neither strictly "objects early'' nor "objects late,"

but gradually introduces object concepts after a brief initial grounding

in the basics of imperative programming. Students learn multiple design

.

XI

. .

XII Preface

techniques, including top-down (functional decomposition), spiral (proto

typing), and object-oriented methods. Additionally, the textbook material

is flexible enough to accommodate other approaches.

• Extensive end-of-chapter problems. Exercises at the end of every

chapter provide ample opportunity for students to reinforce their mastery

of the chapter material and to practice new programming skills.

Changes in the Second and Third Editions

The first edition of the textbook has aged gracefully, and the approach it takes

remains just as relevant now as when it was first published.

While fundamental principles do not change, the technology environment

does. With the release of Python 3. 0, updates to the original material became

necessary. The second edition was basically the same as the original textbook,

except that it was updated to use Python 3. Virtually every program example in

the book had to be modified for the new Python. Additionally, to accommodate

certain changes in Python (notably the removal of the string library), the mate

rial was reordered slightly to cover object terminology before discussing string

processing. A beneficial side effect of this change was an even earlier introduction

of computer graphics to pique student interest.

The third edition continues the tradition of updating the text to reflect new

technologies while maintaining a time-tested approach to teaching introductory

computer science. An important change to this edition is the removal of most

uses of eval and the addition of a discussion of its dangers. In our increasingly

connected world, it's never too early to begin considering computer security is

sues.

Several new graphics examples, developed throughout chapters 4-12, have

been added to introduce new features of the graphics library that support anima

tions, including simple video game development. This brings the text up to date

with the types of final projects that are often assigned in modern introductory

classes.

Smaller changes have been made throughout the text, including:

• Material on file dialogs has been added in Chapter 5.

• Chapter 6 has been expanded and reorganized to emphasize value-returning

functions.

Preface

• Coverage has been streamlined and simplified to use IDLE (the standard

"comes-with-Python" development environment) consistently. This makes

the text more suitable for self-study as well as for use as a classroom text

book.

• Technology references have been updated.

• To further accommodate self-studiers, end-of-chapter solutions for this

third edition are freely available online. Classroom instructors wishing to

use alternative exercises can request those from the publisher. Self-studiers

and instructors alike can visit https:/ /fbeedle.com for details.

Coverage Options

In keeping with the goal of simplicity, I have tried to limit the amount of material

that would not be covered in a first course. Still, there is probably more mate

rial here than can be covered in a typical one-semester introduction. My classes

cover virtually all of the material in the first 12 chapters in order, though not

necessarily covering every section in depth. One or two topics from Chapter 13

('�gorithm Design and Recursion") are generally interspersed at appropriate

places during the term.

Recognizing that different instructors prefer to approach topics in different

ways, I have tried to keep the material relatively flexible. Chapters 1-4 ("Com

puters and Programs," "Writing Simple Programs," "Computing with Numbers,"

"Objects and Graphics") are essential introduction and should probably be

covered in order. The initial portions of Chapter 5 ("Sequences: Strings, Lists,

and Files") on string processing are also fundamental, but the later topics such

as string formatting and file processing can be delayed until needed later on.

Chapters 6--8 ("Defining Functions," "Decision Structures," and "Loop Structures

and Booleans") are designed to stand independently and can be taken in virtu

ally any order. Chapters 9-12 on design approaches are written to be taken in

order, but the material in Chapter 1 1 ("Data Collections") could easily be moved

earlier, should the instructor want to cover lists (arrays) before various design

techniques. Instructors wishing to emphasize object-oriented design need not

spend much time on Chapter 9. Chapter 13 contains more advanced material

that may be covered at the end or interspersed at various places throughout the

course.

. . .

XI I I

.

XIV Preface

Acknowledgments

My approach to CSl has been influenced over the years by many fine textbooks

that I have read and used for classes. Much that I have learned from those books

has undoubtedly found its way into these pages. There are a few specific au

thors whose approaches have been so important that I feel they deserve special

mention. A.K. Dewdney has always had a knack for finding simple examples

that illustrate complex issues; I have borrowed a few of those and given them

new legs in Python. I also owe a debt to wonderful textbooks from both Owen

Astrachan and Cay Horstmann. The graphics library I introduce in Chapter 4

was directly inspired by my experience teaching with a similar library designed

by Horstmann. I also learned much about teaching computer science from Nell

Dale, for whom I was fortunate enough to serve as a TA when I was a graduate

student at the University of Texas.

Many people have contributed either directly or indirectly to the produc

tion of this book. I have also received much help and encouragement from my

colleagues (and former colleagues) at Wartburg College: Lynn Olson for his un

flagging support at the very beginning; Josef Breutzmann, who supplied many

project ideas; and Terry Letsche, who prepared PowerPoint slides for the first

and third editions.

I want to thank the following individuals who read or commented on the

manuscript for the first edition: Rus May, Morehead State University; Carolyn

Miller, North Carolina State University; Guido Van Rossum, Google; Jim Sager,

California State University, Chico; Christine Shannon, Centre College; Paul

Tymann, Rochester Institute of Technology; Suzanne Westbrook, University of

Arizona. I am grateful to Dave Reed at Capital University, who used early ver

sions of the first edition, offered numerous insightful suggestions, and worked

with Jeffrey Cohen at University of Chicago to supply alternate end-of-chapter

exercises for this edition. Ernie Ackermann test drove the second edition at Mary

Washington College. The third edition was test driven in classes by Theresa Migler

at California Polytechnic State University in San Luis Obispo and my colleague

Terry Letsche; and David Bantz provided feedback on a draft. Thanks to all for

their valuable observations and suggestions.

I also want to acknowledge the fine folks at Franklin, Beedle, and Associ

ates, especially Tom Sumner, Brenda Jones, and Jaron Ayres, who turned my

pet project into a real textbook. This edition is dedicated to the memory of Jim

Leisy, the founder of Franklin, Beedle and Associates, who passed away unex-

Preface

pectedly as the third edition was getting off the ground. Jim was an amazing

man of unusually wide-ranging interests. It was his vision, guidance, relentless

enthusiasm, and a fair bit of determined prodding, that ultimately molded me

into a textbook author and made this book a success.

A special thanks also goes out to all my students, who have taught me so

much about teaching, and to Wartburg College for giving me sabbatical support to

work on the book. Last, but most importantly, I acknowledge my wife, Elizabeth

Bingham, who has served as editor, advisor, and morale booster while putting

up with me during my writing spells.

-JMZ

XV

Chapter 1

Objectives

Computers and

Programs

• To understand the respective roles of hardware and software in computing

systems.

• To learn what computer scientists study and the techniques that they use.

• To understand the basic design of a modern computer.

• To understand the form and function of computer programming languages.

• To begin using the Python programming language.

• To learn about chaotic models and their implications for computing.

lt.l l The Universal Machine

Almost everyone has used a computer at one time or another. Perhaps you have

played computer games or used a computer to write a paper, shop online, listen

to music, or connect with friends via social media. Computers are used to predict

the weather, design airplanes, make movies, run businesses, perform financial

transactions, and control factories.

Have you ever stopped to wonder what exactly a computer is? How can one

device perform so many different tasks? These basic questions are the starting
point for learning about computers and computer programming.

1

2 Chapter 1. Computers and Programs

A modern computer can be defined as "a machine that stores and manipu

lates information under the control of a changeable program." There are two

key elements to this definition. The first is that computers are devices for ma

nipulating information. This means we can put information into a computer,
and it can transform the information into new, useful forms, and then output or

display the information for our interpretation.

Computers are not the only machines that manipulate information. When

you use a simple calculator to add up a column of numbers, you are entering
information (the numbers) and the calculator is processing the information to

compute a running sum which is then displayed. Another simple example is a

gas pump. As you fill your tank, the pump uses certain inputs: the current price
of gas per gallon and signals from a sensor that reads the rate of gas flowing

into your car. The pump transforms this input into information about how much

gas you took and how much money you owe.

We would not consider either the calculator or the gas pump as full-fledged
computers, although modern versions of these devices may actually contain em

bedded computers. They are different from computers in that they are built to

perform a single, specific task. This is where the second part of our definition

comes into the picture: Computers operate under the control of a changeable
program. What exactly does this mean?

A computer program is a detailed, step-by-step set of instructions telling a

computer exactly what to do. If we change the program, then the computer

performs a different sequence of actions, and hence, performs a different task.

It is this flexibility that allows your PC to be at one moment a word processor, at

the next moment a financial planner, and later on, an arcade game. The machine

stays the same, but the program controlling the machine changes.
Every computer is just a machine for executing (carrying out) programs.

There are many different kinds of computers. You might be familiar with Macin

toshes, PCs, laptops, tablets and smartphones, but there are literally thousands

of other kinds of computers both real and theoretical. One of the remarkable
discoveries of computer science is the realization that all of these different com

puters have the same power; with suitable programming, each computer can

basically do all the things that any other computer can do. In this sense, the
PC that you might have sitting on your desk is really a universal machine. It

can do anything you want it to do, provided you can describe the task to be

accomplished in sufficient detail. Now that's a powerful machine!

1.2. Program Power

11.21 Program Power

You have already learned an important lesson of computing: Software (pro

grams) rules the hardware (the physical machine). It is the software that de
termines what any computer can do. Without software, computers would just

be expensive paperweights. The process of creating software is called program

ming, and that is the main focus of this book.

Computer programming is a challenging activity. Good programming re

quires an ability to see the big picture while paying attention to minute detail.

Not everyone has the talent to become a first-class programmer, just as not ev
eryone has the skills to be a professional athlete. However, virtually anyone can
learn how to program computers. With some patience and effort on your part,

this book will help you to become a programmer.

There are lots of good reasons to learn programming. Programming is a

fundamental part of computer science and is, therefore, important to anyone in

terested in becoming a computer professional. But others can also benefit from
the experience. Computers have become a commonplace tool in our society. Un

derstanding the strengths and limitations of this tool requires an understanding

of programming. Non-programmers often feel they are slaves of their comput

ers. Programmers, however, are truly in control. If you want to become a more

intelligent user of computers, then this book is for you.

Programming can also be loads of fun. It is an intellectually engaging ac

tivity that allows people to express themselves through useful and sometimes

remarkably beautiful creations. Believe it or not, many people actually write

computer programs as a hobby. Programming also develops valuable problem

solving skills, especially the ability to analyze complex systems by reducing them

to interactions of understandable subsystems.

As you probably know, programmers are in great demand. More than a few
liberal arts majors have turned a couple of computer programming classes into

a lucrative career option. Computers are so commonplace in the business world

today that the ability to understand and program computers might just give you

the edge over your competition regardless of your occupation. When inspiration

strikes, you could be poised to write the next killer app.

lt.3l What Is Computer Science?

You might be surprised to learn that computer science is not the study of com
puters. A famous computer scientist named Edsger Dijkstra once quipped that

3

4 Chapter 1. Computers and Programs

computers are to computer science what telescopes are to astronomy. The com

puter is an important tool in computer science, but it is not itself the object of

study. Since a computer can carry out any process that we can describe, the

real question is "What processes can we describe?" To put it another way, the
fundamental question of computer science is simply "What can be computed?"

Computer scientists use numerous techniques of investigation to answer this

question. The three main ones are design, analysis, and experimentation.

One way to demonstrate that a particular problem can be solved is to actu

ally design a solution. That is, we develop a step-by-step process for achieving
the desired result. Computer scientists call this an algorithm. That's a fancy

word that basically means "recipe." The design of algorithms is one of the most

important facets of computer science. In this book you will find techniques for
designing and implementing algorithms.

One weakness of design is that it can only answer the question "What is

computable?" in the positive. If I can devise an algorithm, then the problem is

solvable. However, failing to find an algorithm does not mean that a problem is

unsolvable. It may mean that I'm just not smart enough, or I haven't hit upon

the right idea yet. This is where analysis comes in.

Analysis is the process of examining algorithms and problems mathemati

cally. Computer scientists have shown that some seemingly simple problems

are not solvable by any algorithm. Other problems are intractable. The algo
rithms that solve these problems take too long or require too much memory to

be of practical value. Analysis of algorithms is an important part of computer

science; throughout this book we will touch on some of the fundamental princi

ples. Chapter 13 has examples of unsolvable and intractable problems.

Some problems are too complex or ill-defined to lend themselves to anal

ysis. In such cases, computer scientists rely on experimentation; they actually

implement systems and then study the resulting behavior. Even when theoret

ical analysis is done, experimentation is often needed in order to verify and
refine the analysis. For most problems, the bottom line is whether a working,

reliable system can be built. Often we require empirical testing of the system

to determine that this bottom line has been met. As you begin writing your

own programs, you will get plenty of opportunities to observe your solutions in
action.

I have defined computer science in terms of designing, analyzing, and eval

uating algorithms, and this is certainly the core of the academic discipline.

These days, however, computer scientists are involved in far-flung activities,
all of which fall under the general umbrella of computing. Some examples

1.4. Hardware Basics

Output

CPU Devices

Input
Devices

Main Secondary
Memory Memory

Figure 1.1: Functional view of a computer

include mobile computing, networking, human-computer interaction, artificial
intelligence, computational science (using powerful computers to model sci

entific processes), databases and data mining, software engineering, web and

multimedia design, music production, management information systems, and

computer security. Wherever computing is done, the skills and knowledge of

computer science are being applied.

I 1.41 Hardware Basics

You don't have to know all the details of how a computer works to be a successful
programmer, but understanding the underlying principles will help you master
the steps we go through to put our programs into action. It's a bit like driving a

car. Knowing a little about internal combustion engines helps to explain why you

have to do things like fill the gas tank, start the engine, step on the accelerator,
and so on. You could learn to drive by just memorizing what to do, but a little

more knowledge makes the whole process much more understandable. Let's

take a moment to "look under the hood" of your computer.

Although different computers can vary significantly in specific details, at a

higher level all modem digital computers are remarkably similar. Figure 1.1
shows a functional view of a computer. The central processing unit (CPU) is the

"brain" of the machine. This is where all the basic operations of the computer are

carried out. The CPU can perform simple arithmetic operations like adding two

numbers and can also do logical operations like testing to see if two numbers
are equal.

5

6 Chapter 1. Computers and Programs

The memory stores programs and data. The CPU can directly access only

information that is stored in main memory (called RAM for Random Access Mem
ory). Main memory is fast, but it is also volatile. That is, when the power is

turned off, the information in the memory is lost. Thus, there must also be some
secondary memory that provides more permanent storage.

In a modem personal computer, the principal secondary memory is typically

an internal hard disk drive (HOD) or a solid state drive (SSD). An HOD stores

information as magnetic patterns on a spinning disk, while an SSD employs elec
tronic circuits known as flash memory. Most computers also support removeable

media for secondary memory such as USB memory "sticks" (also a form of flash

memory) and DVDs (digital versatile discs), which store information as optical

patterns that are read and written by a laser.

Humans interact with the computer through input and output devices. You

are probably familiar with common devices such as a keyboard, mouse, and

monitor (video screen). Information from input devices is processed by the CPU

and may be shuffled off to the main or secondary memory. Similarly, when
information needs to be displayed, the CPU sends it to one or more output

devices.

So what happens when you fire up your favorite game or word processing

program? First, the instructions that comprise the program are copied from the
(more) permanent secondary memory into the main memory of the computer.

Once the instructions are loaded, the CPU starts executing the program.

Technically the CPU follows a process called the fetch-execute cycle. The first

instruction is retrieved from memory, decoded to figure out what it represents,

and the appropriate action carried out. Then the next instruction is fetched,

decoded, and executed. The cycle continues, instruction after instruction. This

is really all the computer does from the time that you turn it on until you turn

it off again: fetch, decode, execute. It doesn't seem very exciting, does it? But
the computer can execute this stream of simple instructions with blazing speed,

zipping through billions of instructions each second. Put enough simple instruc

tions together in just the right way, and the computer does amazing things.

lt.5l Programming Languages

Remember that a program is just a sequence of instructions telling a computer

what to do. Obviously, we need to provide those instructions in a language

that a computer can understand. It would be nice if we could just tell a com
puter what to do using our native language, like they do in science fiction

1.5. Programming Languages

movies. ("Computer, how long will it take to reach planet Alphalpha at maxi

mum warp?") Computer scientists have made great strides in this direction; you

may be familiar with technologies such as Siri (Apple), Google Now (Android) ,

and Cortana (Microsoft). But as anyone who has seriously useded such systems
can attest, designing a computer program to fully understand human language

is still an unsolved problem.

Even if computers could understand us, human languages are not very well

suited for describing complex algorithms. Natural language is fraught with am
biguity and imprecision. For example, if I say "I saw the man in the park with the

telescope," did I have the telescope, or did the man? And who was in the park?

We understand each other most of the time only because all humans share a vast

store of common knowledge and experience. Even then, miscommunication is

commonplace.

Computer scientists have gotten around this problem by designing notations

for expressing computations in an exact and unambiguous way. These special
notations are called programming languages. Every structure in a programming

language has a precise form (its syntax) and a precise meaning (its semantics).
A programming language is something like a code for writing down the instruc

tions that a computer will follow. In fact, programmers often refer to their
programs as computer code, and the process of writing an algorithm in a pro

gramming language is called coding.

Python is one example of a programming language and is the language that
we will use throughout this book.l You may have heard of some other com

monly used languages, such as C++, Java, Javascript, Ruby, Perl, Scheme, or

BASIC. Computer scientists have developed literally thousands of programming

languages, and the languages themselves evolve over time yielding multiple,

sometimes very different, versions. Although these languages differ in many

details, they all share the property of having well-defined, unambiguous syntax

and semantics.

All of the languages mentioned above are examples of high-level computer

languages. Although they are precise, they are designed to be used and under

stood by humans. Strictly speaking, computer hardware can understand only a

very low-level language known as machine language.

Suppose we want the computer to add two numbers. The instructions that

the CPU actually carries out might be something like this:

1This edition of the text was developed and tested using Python version 3.4. Python 3.5 is
now available. If you have an earlier version of Python installed on your computer, you should
upgrade to the latest stable 3.x version to try out the examples.

7

8 Chapter 1. Computers and Programs

load the number from memory location 2001 into the CPU

load the number from memory location 2002 into the CPU

add the two numbers in the CPU

store the result into location 2003

This seems like a lot of work to add two numbers, doesn't it? Actually, it's even

more complicated than this because the instructions and numbers are repre
sented in binary notation (as sequences of Os and ls) .

In a high-level language like Python, the addition of two numbers can be

expressed more naturally: c = a + b. That's a lot easier for us to understand,
but we need some way to translate the high-level language into the machine
language that the computer can execute. There are two ways to do this: a

high-level language can either be compiled or interpreted.

A compiler is a complex computer program that takes another program writ

ten in a high-level language and translates it into an equivalent program in the
machine language of some computer. Figure 1.2 shows a block diagram of the

compiling process. The high-level program is called source code, and the re

sulting machine code is a program that the computer can directly execute. The

dashed line in the diagram represents the execution of the machine code (also
known as "running the program").

Source
Code

(Program)
Compiler

Inputs Running
Program

Figure 1.2: Compiling a high-level language

An interpreter is a program that simulates a computer that understands a

high-level language. Rather than translating the source program into a machine
language equivalent, the interpreter analyzes and executes the source code in

struction by instruction as necessary. Figure 1.3 illustrates the process.

The difference between interpreting and compiling is that compiling is a one

shot translation; once a program is compiled, it may be run over and over again
without further need for the compiler or the source code. In the interpreted

Source
Code

(Program)

Inputs

1.6. The Magic of Python

Computer
Running an
Interpreter

Outputs

Figure 1.3: Interpreting a high-level language

case, the interpreter and the source are needed every time the program runs.

Compiled programs tend to be faster, since the translation is done once and for
all, but interpreted languages lend themselves to a more flexible programming

environment as programs can be developed and run interactively.

The translation process highlights another advantage that high-level lan

guages have over machine language: portability. The machine language of a

computer is created by the designers of the particular CPU. Each kind of com
puter has its own machine language. A program for an Intel i7 Processor in your

laptop won't run directly on an ARMv8 CPU in your smartphone. On the other

hand, a program written in a high-level language can be run on many different

kinds of computers as long as there is a suitable compiler or interpreter (which
is just another program). As a result, I can run the exact same Python program

on my laptop and my tablet; even though they have different CPUs, they both

sport a Python interpreter.

lt.6l The Magic of Python

Now that you have all the technical details, it's time to start having fun with

Python. The ultimate goal is to make the computer do our bidding. To this

end, we will write programs that control the computational processes inside the

machine. You have already seen that there is no magic in this process, but in

some ways programming feels like magic.

The computational processes inside the computer are like magical spirits that

we can harness for our work. Unfortunately, those spirits only understand a very

arcane language that we do not know. What we need is a friendly genie that can

direct the spirits to fulfill our wishes. Our genie is a Python interpreter. We can
give instructions to the Python interpreter, and it directs the underlying spirits

9

